Monthly Archives: December 2014

17 Ways Vitamin C Supports a Healthy Immune System

The power of vitamin C is often attributed to its role as an antioxidant. However, no other antioxidant can perform the many additional physiological and biological roles that vitamin C fills. To think of vitamin C as nothing more than an antioxidant would be a great understatement.

Among its many positive effects on the body, vitamin C is a strong supporter of healthy immune function. Here’s how:

  1. Vitamin C supports the production of interferons. Interferons are produced when the presence of pathogens is detected. They facilitate the ability of cells to launch protective cellular defenses.*

  2. Vitamin C enhances the function of phagocytes. Phagocytes are a type of white blood cell that envelop pathogens and other dangerous particles. Once the invaders are captured in this manner, they are enzymatically digested.*

  3. Vitamin C supports the cell-mediated immune response. There are 2 major ways that the body can respond to a pathogen: antibody-mediated immunity and cell-mediated immunity. Cell-mediated response refers to the activation of macrophages, natural killer cells, and antigen-specific T-lymphocytes that attack anything perceived as a foreign agent.*

  4. Vitamin C neutralizes oxidative stress.*

  5. Vitamin C improves and enhances the immune response achieved with vaccination.*

  6. Vitamin C enhances cytokine production by white blood cells. Cytokines are communication proteins released by certain white blood cells that transmit information to other cells, promoting the immune response.*

  7. Vitamin C inhibits various forms of T-lymphocyte death. T-lymphocytes are a type of white blood cell. They are an integral part of the cell-mediated immune defense system. Vitamin C helps to keep these important cells alive and viable.*

  8. Vitamin C enhances nitric oxide production by phagocytes. Phagocytes, as discussed in #2, are white blood cells that engulf invading microorganisms. Nitric oxide is produced in large amounts in these cells, and it is one of the agents that will kill captured pathogens.*

  9. Vitamin C enhances T-lymphocyte production. As mentioned in #7, these cells are essential to cell-mediated immune responses, and Vitamin C helps them to multiply in number.*

  10. Vitamin C enhances B-lymphocyte production. These white blood cells make antibodies as part of the antibody-mediated immune response. Antibodies are formed in reaction to the initial introduction of an invading pathogen or antigen.*

  11. Vitamin C inhibits neuraminidase production. Some pathogenic viruses and bacteria create neuraminidase, an enzyme that keeps them from being trapped in mucus, one of the body’s natural lines of defense. Inhibiting neuraminidase helps the body optimize this defensive mechanism.*

  12. Vitamin C supports antibody production and activity. Good antibody function is important to a healthy immune system.*

  13. Vitamin C supports natural killer cell activity. Natural killer cells are lymphocytes that can directly attack cells, like tumor cells, and kill them.*

  14. Vitamin C supports localized generation and interaction with hydrogen peroxide. Vitamin C and hydrogen peroxide can kill microorganisms and can dissolve the protective capsules of some bacteria, such as pneumococci. *

  15. Vitamin C enhances cyclic GMP levels in lymphocytes. Cyclic GMP plays a central role in the regulation of many physiologic responses, including the modulation of immune responses. Cyclic GMP is important for normal cell proliferation and differentiation. It also controls the action of many hormones, and it appears to mediate the relaxation of smooth muscle.*

  16. Vitamin C detoxifies histamine. This effect is important in the support of local immune factors.*

  17. Vitamin C enhances the mucolytic effect. This property helps liquefy thick secretions, increasing immune access to infection.*

  18. Vitamin C makes bacterial membranes more permeable to some antibiotics. *

  19. Vitamin C enhances prostaglandin formation. Prostaglandins are hormone-like compounds that control many physiologic processes, including regulating T-lymphocyte function.*

  20. Vitamin C concentrates in white blood cells. Some of the primary cells in the immune system concentrate Vitamin C as much as 80 times higher than the level in plasma. This assures extra delivery of Vitamin C to the sites of infection by the migration of these Vitamin C-rich white blood cells.*

References
[1] Siegel B, “Enhanced interferon response to murine leukemia virus by ascorbic acid” Infection and Immunity 1974 10(2):409-410.
[2] Siegel B, “Enhancement of interferon production by poly(rI)-poly(rC) in mouse cell cultures by ascorbic acid” Nature 1975 254(5500):531-532.
[3] Geber W, Lefkowitz S, Hung C, “Effect of ascorbic acid, sodium salicylate, and caffeine on the serum interferon level in response to viral infection” Pharmacology 1975 13(3):228-233.
[4] Dahl H ,Degre M, “The effect of ascorbic acid on production of human interferon and the antiviral activity in vitro. Acta Pathologica et Microbiologica Scandinavica. Section B” Microbiology 1976 84(5):280-284.
[5] Stone I, “The possible role of mega-ascorbate in the endogenous synthesis of interferon” Medical Hypotheses 1980 6(3):309-314.
[6] Karpinska T, Kawecki Z, Kandefer-Szerszen M, “The influence of ultraviolet irradiation, L-ascorbic acid and calcium chloride on the induction of interferon in human embryo fibroblasts” Archivum Immunologiae et Therapiae Experimentalis 1982 30(1-2)33-37.
[7] Nungester W, Ames A, “The relationship between ascorbic acid and phagocytic activity” Journal of Infectious Diseases 1948 83:50-54.
[8] Goetzl E, et al, “Enhancement of random migration and chemotactic response of human leukocytes by ascorbic acid” The Journal of Clinical Investigation 1974 53(3):813-818.
[9] Sandler J, Gallin J, Vaughan M, “Effects of serotonin, carbamylcholine, and ascorbic acid on leukocyte cyclic GMP and chemotaxis” The Journal of Cell Biology 1975 67(2 Pt 1):480-484.
[10] Boxer L, et al, “Correction of leukocyte function in Chediak-Higashi syndrome by ascorbate” The New England Journal of Medicine 1976 295(19):1041-1045.
[11] Ganguly R, Durieux M, Waldman R, “Macrophage function in vitamin C-deficient guinea pigs” The American Journal of Clinical Nutrition 1976 29(7):762-765.
[12] Anderson R, Dittrich O, “Effects of ascorbate on leucocytes. Part IV. Increased neutrophil function and clinical improvement after oral ascorbate in 2 patients with chronic granulomatous disease” South African Medical Journal 1979 56(12):476-480.
[13] Anderson R, Theron A, “Effects of ascorbate on leucocytes. Part III. In vitro and in vivo stimulation of abnormal neutrophil motility by ascorbate” South African Medical Journal 1979 56(11):429-433.
[14] Anderson R, et al, “The effects of increasing weekly doses of ascorbate on certain cellular and humoral immune functions in normal volunteers” The American Journal of Clinical Nutrition 1980 33(1):71-76.
[15] Anderson R, et al, “The effect of ascorbate on cellular humoral immunity in asthmatic children” South African Medical Journal 1980 58(24):974-977.
[16] Dallegri F, Lanzi G, Patrone F, “Effects of ascorbic acid on neutrophil locomotion” International Archives of Allergy and Applied Immunology 1980 61(1):40-45.
[17] Corberand J, et al, “Malignant external otitis and polymorphonuclear leukocyte migration impairment. Improvement with ascorbic acid” Archives of Otolaryngology 1982 108(2):122-124.
[18] Patrone F, et al, “Effects of ascorbic acid on neutrophil function. Studies on normal and chronic granulomatous disease neutrophils” Acta Vitaminologica et Enzymologica 1982 4(1-2):163-168.
Cunningham-Rundles S, “Effects of nutritional status on immunological function” The American Journal of Clinical Nutrition 1982 35(5 Suppl):1202-1210.
[19] Oberritter H, et al, “Effect of functional stimulation on ascorbate content in phagocytes under physiological and pathological conditions” International Archives of Allergy and Applied Immunology 1986 81(1):46-50.
[20] Levy R, Schlaeffer F, “Successful treatment of a patient with recurrent furunculosis by vitamin C: improvement of clinical course and of impaired neutrophil functions” International Journal of Dermatology 1993 32(11):832-834.
[21] Levy R, et al, “Vitamin C for the treatment of recurrent furunculosis in patients with impaired neutrophil functions” The Journal of Infectious Diseases 1996 173(6):1502-1505.
[22] Ciocoiu M, et al, “The involvement of vitamins C and E in changing the immune response” [Article in Romanian] Revista Medico-Chirurgicala a Societatii de Medici si Naturalisti din Iasi 1998 102(1-2):93-96.
De la Fuente M, et al, “Immune function in aged women is improved by ingestion of vitamins C and E” Canadian Journal of Physiology and Pharmacology 1998 76(4):373-380.
[23] Glick D, Hosoda S, “Histochemistry. LXXViii. Ascorbic acid in normal mast cells and macrophages and neoplastic mast cells” Proceedings of the Society for Experimental Biology and Medicine 1965 119:52-56.
[24] Thomas W, Holt P, “Vitamin C and immunity: an assessment of the evidence” Clinical and Experimental Immunology 1978 32(2):370-379.
[25] Evans R, Currie L, Campbell A, “The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration” The British Journal of Nutrition 1982 47(3):473-482.
[26] Goldschmidt M, “Reduced bactericidal activity in neutrophils from scorbutic animals and the effect of ascorbic acid on these target bacteria in vivo and in vitro” The American Journal of Clinical Nutrition 1991 54(6 Suppl):1214S-1220S.
[27] Washko P, Wang Y, Levine M, “Ascorbic acid recycling in human neutrophils” The Journal of Biological Chemistry 1993 268(21):15531-15535.
[28] Siegel B, Morton J, “Vitamin C and the immune response” Experientia 1977 33(3):393-395.
Jeng K, et al, “Supplementation with vitamins C and E enhances cytokine production by peripheral blood mononuclear cells in healthy adults” The American Journal of Clinical Nutrition 1996 64(6):960-965.
Campbell J, et al, “Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis” Cellular Immunology 1999 194(1):1-5.
[29] Mizutani A, et al, “Ascorbate-dependent enhancement of nitric oxide formation in activated macrophages. Nitric Oxide: Biology and Chemistry 1998 2(4):235-241.
[30] Mizutani A. Tsukagoshi N, “Molecular role of ascorbate in enhancement of NO production in activated macrophage-like cell line, J774.1” Journal of Nutritional Science and Vitaminology 1999 45(4):423-435.
[31] Fraser R, et al, “The effect of variations in vitamin C intake on the cellular immune response of guinea pigs” The American Journal of Clinical Nutrition 1980 33(4):839-847.
Kennes B, et al, “Effect of vitamin C supplements on cell-mediated immunity in old people” Gerontology 1983 29(5):305-310.
[32] Wu C, Dorairajan T, Lin T, “Effect of ascorbic acid supplementation on the immune response of chickens vaccinated and challenged with infectious bursal disease virus” Veterinary Immunology and Immunopathology 2000 74(1-2):145-152.
[33] Schwager J, Schulze J, “Influence of ascorbic acid on the response to mitogens and interleukin production of porcine lymphocytes” International Journal for Vitamin and Nutrition Research 1997 67(1):10-16.
[34] Rotman D, “Sialoresponsin and an antiviral action of ascorbic acid” Medical Hypotheses 1978 4(1):40-43.
[35] Ecker E, Pillemer L, “Vitamin C requirement of the guinea pig” Proceedings of the Society for Experimental Biology and Medicine 1940 44:262.
[36] Bourne G, “Vitamin C and immunity” The British Journal of Nutrition 1949 2:342.
Prinz W, et al, “The effect of ascorbic acid supplementation on some parameters of the human immunological defence system” International Journal for Vitamin and Nutrition Research 1977 47(3):248-257.
[37] Vallance S, “Relationships between ascorbic acid and serum proteins of the immune system” British Medical Journal 1977 2(6084):437-438.
[38] Sakamoto M, et al, “The effect of vitamin C deficiency on complement systems and complement components” Journal of Nutritional Science and Vitaminology 1981 27(4):367-378.
Feigen G, et al, “Enhancement of antibody production and protection against systemic anaphylaxis by large doses of vitamin C” Research Communications in Chemical Pathology and Pharmacology 1982 38(2):313-333.
[39] Li Y, Lovell T, “Elevated levels of dietary ascorbic acid increase immune responses in channel catfish” The Journal of Nutrition 1985 115(1):123-131.
[40] Wahli T, Meier W, Pfister K, “Ascorbic acid induced immune-mediated decrease in mortality in Ichthyophthirius multifiliis infected rainbow-trout (Salmo gairdneri)” Acta Tropica 1986 43(3):287-289.
[41] Johnston C, Kolb W, Haskell B, “The effect of vitamin C nutriture on complement component C1q concentrations in guinea pig plasma” The Journal of Nutrition 1987 117(4):764-768.
[42] Haskell B, Johnston C, “Complement component C1q activity and ascorbic acid nutriture in guinea pigs” The American Journal of Clinical Nutrition 1991 54(6 Suppl):1228S-1230S.
[43] Wu C, Dorairajan T, Lin T, “Effect of ascorbic acid supplementation on the immune response of chickens vaccinated and challenged with infectious bursal disease virus” Veterinary Immunology and Immunopathology 2000 74(1-2):145-152.
[44] Heuser G, Vojdani A, “Enhancement of natural killer cell activity and T and B cell function by buffered vitamin C in patients exposed to toxic chemicals: the role of protein kinase-C” Immunopharmacology and Immunotoxicology 1997 19(3):291-312.
[45] Horrobin D, et al, “The nutritional regulation of T lymphocyte function” Medical Hypotheses 1979 5(9):969-985.
[46] Scott J, “On the biochemical similarities of ascorbic acid and interferon” Journal of Theoretical Biology 1982 98(2):235-238.
[47] Siegel B, Morton J, “Vitamin C and immunity: influence of ascorbate on prostaglandin E2 synthesis and implications for natural killer cell activity” International Journal for Vitamin and Nutrition Research 1984 54(4):339-342.
[48] Atkinson J, et al, “Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes” Journal of Cyclic Nucleotide Research 1979 5(2):107-123.
[49] Panush R, et al, “Modulation of certain immunologic responses by vitamin C. III. Potentiation of in Vitro and in vivo lymphocyte responses” International Journal for Vitamin and Nutrition Research. Supplement 1982 23:35-47.
[50] Strangeways W, “Observations on the trypanocidal action in vitro of solutions of glutathione and ascorbic acid” Annals of Tropical Medicine and Parasitology 1937 31:405-416.
[51] Miller T, “Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid, and lysozyme” Journal of Bacteriology 1969 98(3):949-955.
[52] Tappel A, “Lipid peroxidation damage to cell components” Federation Proceedings 1973 32(8):1870-1874.
[53] Kraut E, Metz E, Sagone A, “In vitro effects of ascorbate on white cell metabolism and the chemiluminescence response” Journal of the Reticuloendothelial Society 1980 27(4):359-366.
[54] Robertson W, Ropes M, Bauer W, “The degradation of mucins and polysaccharides by ascorbic acid and hydrogen peroxide” The Biochemical Journal 1941 35:903.
[55] Nandi B, et al, “Effect of ascorbic acid on detoxification of histamine under stress conditions” Biochemical Pharmacology 1974 23(3):643-647.
[56] Johnston C, Martin L, Cai X, “Antihistamine effect of supplemental ascorbic acid and neutrophil chemotaxis” Journal of the American College of Nutrition 1992 11(2):172-176.
[57] Kastenbauer S, et al, “Oxidative stress in bacterial meningitis in humans” Neurology 2002 58(2):186-191.
[58] Versteeg J, “Investigations on the effect of ascorbic acid on antibody production in rabbits after injection of bacterial and viral antigens by different routes. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Series C” Biological and Medical Sciences 1970 73(5):494-501.
[59] Banic S, “Immunostimulation by vitamin C” International Journal for Vitamin and Nutrition Research. Supplement 1982 23:49-52.
[60] Wu C, Dorairajan T, Lin T, “Effect of ascorbic acid supplementation on the immune response of chickens vaccinated and challenged with infectious bursal disease virus” Veterinary Immunology and Immunopathology 2000 74(1-2):145-152.
[61] Ericsson Y, “The effect of ascorbic acid oxidation on mucoids and bacteria in body secretions” Acta Pathologica et Microbiologica Scandinavica 1954 35:573-583.
[62] Rawal B, “Bactericidal action of ascorbic acid on Pseudomonas aeruginosa: alteration of cell surface as a possible mechanism” Chemotherapy 1978 24(3):166-171.

©2014 LivOn Labs. Content adapted from Primal Panacea by Thomas E. Levy, MD, JD.

More Insulin = More Fat

insulin and fat

You know those who claim to have been blessed with a “fast” metabolism? Yes, they bug us, too….. It seems some have innate systems that allow them to process sugars, starches, fats and calories more efficiently. With the holiday season upon us, an efficient calorie and fat burning system is on many of our wish lists.

What you may not know is that your entire metabolic system may not be to blame for that layer of fat you can’t seem to banish – the culprit may be insulin sensitivity.

<div class=”callout”>Insulin is a hormone that regulates the metabolism of carbohydrates and fats.</div>

Whenever you eat carbohydrates or protein, the level of sugar in your blood increases. In healthy individuals, insulin is released from the pancreas to remove the excess sugar from the blood, which otherwise would be toxic. This sugar is then used for energy. If your body is not responding properly to the insulin (poor insulin sensitivity), it begins to over-produce insulin in order to keep blood sugar levels in check. This can be the thing standing between you and your fat loss goals, because insulin has a powerful ability to prevent the breakdown of fat.

More Insulin Equals More Fat

What can you do to improve your insulin sensitivity? Fitness professionals have relied on one particular supplement for years. Some would say it’s one of the best kept secrets to weight management…. R-Alpha Lipoic Acid (or R-ALA).

Multiple placebo controlled studies have shown that daily doses of 600 mg to 1800 mg of ALA can improve insulin sensitivity and the utilization of glucose, ultimately leading to healthy blood sugar levels.

ALA may also go a step further and help prevent the complications that are associated with unhealthy blood sugar levels, specifically complications in the vascular system and kidneys. Recent research indicates this reduced threat of complication comes from ALA’s ability to protect the inner lining of blood vessels (the endothelium) from damage caused by oxidative stress.

It’s important to note that all R-ALA supplements are not created equal. Research shows that R -Alpha Lipoic Acid is a more biologically active form of ALA that offers greater antioxidant and neuroprotective benefits at substantially lower doses than the “S” form of alpha lipoic acid that is more commonly available. The body has a strong preference for natural R-ALA. Be sure to look for this when comparing supplements. Lypo-Spheric™ R-ALA uses the more bioavailable, “R” form of alpha lipoic acid, the form found in nature.

In addition to increasing insulin sensitivity, R-Alpha Lipoic Acid (R-ALA) is one of the body’s most powerful intracellular and extracellular antioxidants. Known as the Universal Antioxidant, R-ALA directly affects the health of nearly every cell in the body, and can even cross the blood-brain barrier. The “R” form of ALA is considered the most bioavailable and biologically active form of ALA in the body. LypriCel™ R-ALA delivers high-quality R-ALA in every packet, neutralizing free radicals in nearly every part of the body.

Give the gift of healthy to nearly every part of the body this holiday season with Lypo-Spheric R-ALA. The heart, brain, eyes and waistline will all thank you for improved insulin sensitivity and reduced damage from free radicals.